边缘设备上卷积神经网络(CNN)的部署受到性能要求和可用处理能力之间的巨大差距的阻碍。尽管最近的研究在开发网络修剪方法以减少CNN的计算开销方面取得了长足的进步,但仍然存在相当大的准确性损失,尤其是在高修剪比率下。质疑为非封闭网络设计的架构可能对修剪网络没有效,我们建议通过定义新的搜索空间和新颖的搜索目标来搜索架构修剪方法。为了改善修剪网络的概括,我们提出了两个新型的原始孔和prunedlinearaare操作。具体而言,这些操作通过正规化修剪网络的目标函数来缓解不稳定梯度的问题。提出的搜索目标使我们能够培训有关修剪权重元素的体系结构参数。定量分析表明,我们的搜索架构优于在CIFAR-10和Imagenet上最先进的修剪网络中使用的体系结构。就硬件效率而言,PR-DARTS将Mobilenet-V2的准确性从73.44%提高到81.35%(+7.91%提高),并且运行3.87 $ \ times $的速度更快。
translated by 谷歌翻译
在本文中,我们考虑了增强学习(RL)中对风险敏感的顺序决策。我们的贡献是两个方面。首先,我们介绍了一种新颖而连贯的风险量化,即复合风险,该风险量化了学习过程中综合和认知风险的关节作用。现有的作品单独被视为综合性或认知风险,或作为添加剂组合。我们证明,当认知风险措施被期望取代时,添加剂配方是复合风险的特殊情况。因此,综合风险比单个和添加剂配方对伴侣和认知不确定性更敏感。我们还基于集合引导和分布RL提出了一种算法,Sentinel-K,分别代表认知和差异不确定性。 K Learners的合奏使用遵循正规领导者(FTRL)来汇总分布并获得综合风险。我们通过实验验证了Sentinel-K可以更好地估计回报分布,并且与复合风险估计相比,与最新风险敏感和分布RL算法相比,对风险敏感的性能更高。
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them) has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. this algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as the result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework which can be used individually or as a part of generating the summary to overcome coverage problems.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
在这项综合研究中,通过基于能量环境分析添加入口空气冷却和再生冷却来评估涡轮轴发动机。首先,飞行器数量,飞行高度,主要周期中压缩机1的压缩比,主周期中涡轮-1的涡轮入口温度,涡轮-2的温度分数,辅助的压缩比循环和入口空气冷却系统中的进气温变化,这些功能性能参数的某些功能性能参数,配备了带有入口空气冷却系统的再生涡轮轴发动机周期,例如功率特异性的燃油消耗,功率输出,热效率和硝酸盐氧化物的质量流量(质量流量) NOX)通过使用氢作为燃料工作,研究了NO和NO2。因此,基于分析,开发了一个模型来预测带有冷却空气冷却系统基于深神经网络(DNN)的再生涡轮轴发动机周期的能量环境性能层。该模型提出的旨在预测含有NO和NO2的氮化物氧化物(NOX)的质量流量和质量流量。结果证明了综合DNN模型的准确性,具有适当的MSE,MAE和RMSD成本函数,用于验证测试和培训数据。同样,对于热效率和NOX发射质量流量,对于热效率的验证和NOX发射质量流量质量预测值及其测试数据,R和R^2都非常接近1。
translated by 谷歌翻译
DeepMind的游戏理论与多代理团队研究多学科学习的几个方面,从计算近似值到游戏理论中的基本概念,再到在富裕的空间环境中模拟社会困境,并在困难的团队协调任务中培训3-D类人动物。我们小组的一个签名目的是使用DeepMind在DeepMind中提供的资源和专业知识,以深入强化学习来探索复杂环境中的多代理系统,并使用这些基准来提高我们的理解。在这里,我们总结了我们团队的最新工作,并提出了一种分类法,我们认为这重点介绍了多代理研究中许多重要的开放挑战。
translated by 谷歌翻译
对比度学习是视觉表示学习最成功的方法之一,可以通过在学习的表示上共同执行聚类来进一步提高其性能。但是,现有的联合聚类和对比度学习的方法在长尾数据分布上表现不佳,因为多数班级压倒了少数群体的损失,从而阻止了学习有意义的表示形式。由此激励,我们通过适应偏见的对比损失,以避免群集中的少数群体类别的不平衡数据集来开发一种新颖的联合聚类和对比度学习框架。我们表明,我们提出的修改后的对比损失和分歧聚类损失可改善多个数据集和学习任务的性能。源代码可从https://anonymon.4open.science/r/ssl-debiased-clustering获得
translated by 谷歌翻译
在过去的20年中,情感认可受到了计算机视觉社区的极大关注。但是,大多数研究都集中在分析六种基本情绪(例如,喜悦,愤怒,惊喜),其作品有限针对其他情感状态。在本文中,我们解决了感性(强烈的心动或怀旧感),这是一种新的情绪状态,在文献中很少有作品,也没有定义其面部标记的准则。为此,我们首先收集了一个4.9k视频的数据集,该视频的参与者观看了一些感性和非情感广告,然后我们将瞬间贴上了广告中的瞬间。其次,我们使用不同框架的广告级标签和面部动作单元(AUS)激活来定义一些弱帧级感性标签。第三,我们使用AUS激活来训练多层感知器(MLP)以进行感性检测。最后,我们定义了两个新的广告级指标,以评估我们的模型性能。定量和定性结果显示了感性检测的有希望的结果。据我们所知,这是解决感性检测问题的第一项工作。
translated by 谷歌翻译